

电能表

D13 15 用户手册 li

D13 15 用户手册 9AKK108468A8827 A版

1 一 放 信 忌	5
1.1 手册的使用和保管	5
1.2 版权	5
1.3 免责声明	5
1.4 一般安全警告	5
1.5 网络安全免责声明	6
2 技术特性	7
2.1 产品标识	7
2.2 型号	9
2.3 外形尺寸	9
2.4 主要功能	10
2.5 技术数据	11
2.6 绝缘图	
3 安装	13
3.1 安装电表	
3.2 环境因素	14
3.3 安装电表	14
3.4 接线图	16
3.5 配置电表	
4 首次调试	21
4 首次调试	21 21
4 首次调试 4.1 快速设置 4.2 最终确认	21 21 24
4 首次调试 4.1 快速设置 4.2 最终确认	21 21 24
4 首次调试 4.1 快速设置 4.2 最终确认 5 设备访问方式	21 21 24 25
4 首次调试 4.1 快速设置 4.2 最终确认	
 4 首次调试	21 24 24 25 25 25
4 首次调试	21 21 24 25 25 25 26
 4 首次调试	21 24 24 25 25 25 25 26 27
 4 首次调试	21 21 24 25 25 25 25 26 27 28
 4 首次调试	21 24 24 25 25 25 25 26 27 28
 4 首次调试	21 24 24 25 25 25 26 27 27 28
 4首次调试	21 24 24 25 25 25 25 26 27 28 27 28 30 30
 4 首次调试	21 24 24 25 25 25 25 26 27 28 28 30 30 31
 4首次调试	21 24 24 25 25 25 26 27 28 27 28 30 30 31 33
4 首次调试 4.1 快速设置 4.2 最终确认 5 设备访问方式 5 1 按钮说明 5.2 显示结构 5.3 菜单 5.4 图标说明和状态 5.5 主菜单 6 配置 6.1 菜单结构 6.2 设置值 6.3 设置密码 6.4 重置选项	21 24 24 25 25 25 25 26 27 28 28 30 30 31 33 34
 4 首次调试	21 24 24 25 25 25 26 27 28 20 27 28 30 30 31 31 33 34 35
 4 首次调试	21 24 24 25 25 25 25 26 27 28 28 30 30 31 33 33 34 33 34 35 36
 4 首次调试	21 24 24 25 25 25 26 27 28 30 30 30 31 33 33 34 33 34 35 36 37

6.8 设置导线	
6.9 设置I-0	
6.10 设置警报	
6.11 设置分时费率	
6.12 设置Modbus通信	41
6.13 设置M-bus通信	
7 技术电表功能	43
7.1 电能值	
7.2 仪表功能	
7.3 警报	
7.4 输入和输出	
7.5 日志	47
8 测量方法	49
8 测量方法 8.1 测量电能和功率	49
8 测量方法 8.1 测量电能和功率 8.2 单相计量	49 49 54
8 测量方法 8.1 测量电能和功率 8.2 单相计量 8.3 3相3线计量	49
8 测量方法 8.1 测量电能和功率 8.2 单相计量 8.3 3相3线计量 8.4 3相4线计量	
8 测量方法 8.1 测量电能和功率 8.2 单相计量 8.3 3相3线计量 8.4 3相4线计量	49
8 测量方法	
 8 测量方法	

1一般信息

1.1 手册的使用和保管

在使用本设备之前,请仔细阅读本手册并遵守所述指示。

本手册包含所有安全须知、技术细节和操作流程,以确保正确使用设备并保持其安全状态。

1.2版权

本手册的版权归ABB S.p.A.所有。

本手册所含文字、设计及插图均属技术性质,未经ABB S.p.A.书面许可,严禁以整体或部分形式对外披露或转交 第三方。

1.3 免责声明

本文件内容如有变动,恕不另行通知,且不应视为ABB S.p.A.的一项义务。对于本文件中可能出现的任何错误,ABB S.p.A.概不负责。对于因使用本文件而造成的任何直接、间接、特殊、偶发或后果性损害,ABB S.p.A.概不负责。同时,对于因使用本文件中提及的软件或硬件而引发的任何偶发或继发性损害,ABB S.p.A.亦不承担任何责任。

1.4 一般安全警告

不遵守以下事项可能导致严重受伤或死亡。

使用适当的个人防护设备,并遵守现行的电气安全法规。

- 本设备只能由已阅读所有与安装相关的资料的合格人员安装。
- 检查电源电压和测量值是否与设备允许的范围兼容。
- 在对设备进行任何控制、目视检查和测试之前,确保断开所有电流和电压电源。
- 在所有电路被完全断开、接受测试并贴上标签之前,务必假定所有电路都处于通电状态。
- 在对设备进行操作之前,断开所有电源。
- 务必使用合适的电压检测设备检查电源是否被断开。
- 注意任何危险,并仔细检查工作区域,确保在设备所在隔间内没有遗留仪器或异物。
- 正确使用本设备取决于操作、安装和使用是否正确。
- 不遵守基本安装信息可能导致人员受伤以及电气仪器或任何其他产品的损坏。
- 切勿在旁路中连接外部熔断器。
- 在对安装有本设备的仪器进行介电强度试验或绝缘试验之前,断开所有输入和输出线。
- 在高压下进行的试验可能会损坏设备的电子元件。
- 设备必须安装在配电柜内。
- D13的安装应包括一个开关或断路器,用于连接电压测量端子。开关或断路器必须位置合适、易于触及,并且 必须标注为D13的断路装置。
- 在连接或断开电压测量端子之前,关闭断路器或开关。

1.5 网络安全免责声明

D13电表设计用于通过网络接口实现信息与数据的传输,此接口应接入安全网络。您有责任提供并持续确保产品 与您的网络或任何其他网络(视情况而定)之间的安全连接,并建立和维护适当的措施(例如但不限于安装防火 墙、应用认证措施、数据加密、安装防病毒程序等),以保护D13电表产品、网络、系统和接口免受任何类型的 安全漏洞、未经授权的访问、干扰、入侵、泄漏和/或数据或信息被盗。对由上述安全漏洞、未经授权的访问、干 扰、入侵、泄露和/或数据或信息被盗引起的损坏和/或损失,ABB S.p.A.及其附属公司概不负责。

虽然ABB S.p.A.为我们发布的产品和更新提供了功能测试,但您应该为任何产品更新或其他主要系统更新制定自己的测试程序(包括但不限于代码更改、配置文件更改、第三方软件更新或修补程序、硬件更换等)以确保您实施的安全措施没有受到损害,并且您环境中的系统功能符合预期。

2 技术特性

2.1 产品标识

部件说	明	
1	密封点	密封螺纹用于密封电表
2	端子排	电压和电流端子
3	LED	闪烁次数与测量的能量成正比
4	显示屏	用于读取电表的LCD
5	OK按钮	按下可执行操作或选择菜单。
6	DOWN/ESC按钮	向下切换(短按) 在菜单中按Esc键(长按)
7	UP/HOME按钮	向上切换(短按) 进入配置模式(长按)
8	输入/输出连接端子	
9	用于通信连接的端子	

产品标	
10	产品信息
11	危险电压
12	端子说明
13	序列号条形码
14	ABB电能表网页的二维码链接

产品标	示签		
1	正/反向电能	17	额定冲击电压Uimp
2	11级防护设备	18	工作温度范围
3	三元件计量	19	MID和验证年份
4	二元件计量	20	公告机构
5	单元件计量	21	产品标准
6	产品代码	22	ECO Solution商标
7	产品类型	23	使用过的电气和电子设备不得与生活垃圾一起 处置。
8	型号代码	24	只能由具有电工专业知识的人员安装。
9	标称电压	25	请参阅操作说明。
10	电流	26	注意,请参阅随附文件。
11	频率	27	密封标签(请勿移除)
12	LED脉冲频率		
13	有功电能精度		
14	无功电能精度		
15	防护等级		
16	使用类别		

2.2 型号

下表所列为D13 15电表型号:

产品名称	认证	通信	I/O	精度
D13 15 65	-	-		等级1 - 有功 等级2- 无功
D13 15-M 65	MID	-	1个数字输入 1个数字输出	
D13 15-M 65 Modbus	MID	Modbus RTU	──────────────────────────────────────	等级B/1 - 有功
D13 15-M 65 Mbus	MID	Mbus		等级2- 无功
D13 P 15-M 65 Modbus	MID	Modbus RTU	-	•

2.3 外形尺寸

52,5 mm

2.4 主要功能

机械性能	
DIN模块	3
外形尺寸	65 x 97 x 52.5 mm
电压/电流输入	
直接连接	65A
通过CT间接连接	否
	否
能量测量	
有功电能	
无功电能	
视在电能	
Wh/CO2当量	•
Wh/CUR当量	
	•
瞬时测量值	
电压	
电流	
中性线电流	
新率	
有功功率	
无功功率	
初在功率	
由能质量测量	
功率因数	
功能	
	2
而日数子和八的日星贝子 通过通信传输的计景弗家	4
	25
<u>事件日末(警告</u> 警报和错误)	EJ
1/0	
数字输 λ	1
数字输入	1
	1
通信	
₩□□ 脉冲输出	
M_Bue(可洗)	
Modbus PTU (可选)	
家现伊拉	
田41奴子组成的名词	

2.5 技术数据

电压/电流输入	
标称电压	3 x 220/380 VAC
	3 x 240/415 VAC
电压范围	3 x 220-240 VAC +/- 20%
电压电路功耗	
电流电路功耗	
基极电流lb	5A
参准电流Iref	5A
转折电流ltr	0.5A
额定电流	5A
最大电流Imax	65A
最小电流Imin	0.25A
起动电流lst	20mA
一般数据	
频率	50/60 Hz ± 5%
精度等级指数	B(等级1)– 有功
	等级2 – 无功
电表常数	1.000 imp/kWh
服务类型	3相4线
	3相3线
	2相-3线(非MID)
电能显示	
防护等级	
过压类别	
污染等级	2
额定冲击电压Uimp	6 kV
使用类别(UC)	UC-2
机械	
材料	外壳和端子盖:由至少70%的可回收塑料制成。
	前面板:抗紫外线聚酯
重量	250g
环倍	
工作但由	
闲住 <u>冲</u> 皮 环谙冬 <u>件</u> (远行)	
问反	
迎え 耐火性和耐热性	
防水防尘性能	
	IP 20,有保护外壳时为IP 51
机械环境	根据《计量器具指令》,达到M2级 (MID),(2014/32/EU)
电磁环境	根据《计量器具指令》,达到E2级 (MID),(2014/32/EU)

数字输出	
电流	2…60 mA
电压	5…40 VDC (+/-10%)
最大通态电压降	1.5 V
脉冲输出频率	Prog.1–999999 imp/MWh, 1–999999 imp/kWh,
	1–999999 imp/Wh
脉冲长度	10–990 ms
绝缘套	SELV
最大电压(绝对额定值)	44 VDC
断态电压	05 VDC (+/-10%)
通态电压	10…40 VDC (+/-10%)
最小脉冲长度和脉冲暂停	30 ms
绝缘套	SELV
M-Bus	EN 13757-2, EN 13757-3
Modbus	《Modbus应用协议规范》1.1b版
绝缘套	SELV
	1000 imp/kWh
脉冲长度	40 ms
*LED脉冲控制具有1ms的时间不确定性(抖动)。如果最小测量 率为500Hz,低于2.5kHz的最大值。	时间为10秒,则测量不确定度为(1ms/10s)*100=0.01%,即我们额定精度1%的1/100。我们的最大脉冲频
FMC華容性	
	6 kV 1.2/50us (IEC 60060-1)
	4 kV 1 2/50µs (IEC 61000-4-5)
快速瞬变脉冲群试验	4 kV (IEC 61000-4-4)
高频电磁场抗扰度	10 V/m时为80 MHz-2 GHz(IFC 61000-4-3)
传导干扰抗扰度	150kHz-80MHz. (IEC 61000-4-6)
静电释放	15 kV (IEC 61000-4-2)
	 EN 50470-3:2022(仅适用于MID仪器)
	EN IEC 62052-11:2021/A11:2022
	IEC 62052-31:2015-09
	EN 62052-31:2016-06
	EN IEC 62053-21/A11:2021
	,

2.6 绝缘图

线路输入/线路输出端子		危险部件
 	 缘层	
通信端子	I/O端子	可触及部分

EN IEC 62053-23/A11:2021 EN IEC 62053-23:2022:02 EN 62059-32-1:2012 CISPR 32:2015 B级 Welmec指南11.1 Welmec指南7.2

3 安装

本章介绍了D13 15-65电表的安装步骤及其与电网的连接方法。同时,本章还提供了电表基础配置指南及I/O与通 信选件的连接信息。

一般来说,国家对于电气安装有明确的规定。这些规定指明了所需使用的连接电缆的类型与规格。

3.1 安装电表

本节介绍D13 15电表的多种安装方法。部分方法可能需要额外附件的支持。关于这些附件的详细信息,请参阅产 品说明总册(9AKK107492A3149)。

DIN导轨安装

D13 15电表用于安装在DIN导轨(符合DIN 50022标准)上。此安装方式无需额外附件,仅需将电表牢固锁扣于导轨之上即可完成安装。下图所示为DIN导轨。

壁挂式

推荐的壁挂式安装方法是先在墙上安装一条专用的DIN导轨,随后将电表稳稳地固定在导轨上。

3.2 环境因素

防护等级

本产品专为室内使用设计。根据IEC 60259标准,需确保电表被安装于防护等级至少达到IP 51的防火电表柜中,以符合保护要求。

机械环境

依据《测量指令》(2014/32/EU),该产品符合M2标准,证明其能够在"存在显著或较高的振动与冲击的场所运行,适应于重型机械、传送带周边或车辆往来频繁等环境。"

电磁环境

依据《测量指令》(2014/32/EU),该产品符合E2标准,证明其能够在"其他工业建筑中可能存在的电磁干扰环 境下使用。"

气候环境

为保证产品正常工作,请确保操作环境温度在-40°C至+70°C的指定范围内。此外,避免产品暴露于年平均湿度超 过75%的环境中,每年不得超过30天处于95%的高湿度条件下。该产品专为室内使用设计。

3.3 安装电表

警告

警告 - 电气设备应仅由合格的电气人员进行安装、检修、维修和维护。高压作业可能致命。暴露于高压的人可能 会遭受心脏骤停、烧伤或其他严重伤害。为避免此类伤害,请确保在开始安装之前断开电源。

警告 - 出于安全原因,建议以无法意外接触端子排的方式安装设备。最安全的安装方法是将设备安装在机柜中。 此外,应使用锁和钥匙限制对设备的访问,并由合格的电气人员控制锁和钥匙。

警告 -务必通过输入侧的熔断器或适当的MCB(详见"电路保护")来保护电表。

电缆类型

连接到电压/电流端子的电缆类型应为实心或绞合铜电缆。使用多股线电缆时,可以使用电缆端套圈。

安装电表

按照下表中的步骤安装并验证电表的安装:

步骤	操作
1	关闭主电源。
2	将电表放在DIN导轨上,并确保其卡合在导轨上。
3	剥去电缆绝缘层至电表上指示的长度。
4	根据电表上打印的接线图连接电缆,并拧紧表"通信"中所示的螺钉。
5	安装电路保护装置(请参阅"电路保护")。
6	如果使用了输入/输出,请根据电表上打印的接线图连接电缆,并拧紧表"通信" 中所示的螺 钉。然后按照额定电压值(最大40Vdc)连接到外部电源。
7	

验证安装

按照下表中的步骤验证电表的安装:

步骤	操作
8	检查电表是否连接到指定的电压,电压相位连接和中性线(如果使用)是否连接到正确的端 子。
10	打开电源。如果显示警告符号,请参阅"9.2 事件代码"中的错误代码。
11	在电表上的"瞬时值"菜单项下,检查电压、电流、功率和功率因数是否合理,以及功率方向 是否符合预期(对于消耗电能的负载,总功率应为正)。在进行检查时,应将电表连接到目 标负载(最好是所有相的电流均高于零的负载),以确保检查的全面性。

电路保护

使用此表中的信息选择正确的电路保护熔断器:

电表类型	最大短路保护	
	65 A MCB,C特性或gL-gG型65 A熔断器	

一般来说,有针对电气装置保护的国家法规。这些法规规定了外部保护设备的类型、额定值及特性,如断路器和 熔断器。这些设备的选用取决于计量设备的安装位置。

安装人员需确保电源侧的过电流与过载保护装置,其额定值及特性与最大额定电流相匹配;若涉及直接连接的电表,则还需与计量设备的UC额定值相协调。

3.4 接线图

本节介绍如何将电表连接到电网。下列接线图中的端子编号与电表端子排上的标记相对应。

对于MID电表,一旦达到1kWh的能耗,D13将进入MidLock状态。在达到MidLock状态后,不能再根据《欧洲 MID指令》修改接线设置。

•3相4线连接(MID)

•3相3线连接(MID)

•2相3线连接(无MID配置)

 \mathbf{i}

•1相2线连接(MID)

要满足MID指令(2014/32/EU),只能使用L1。

• 输入连接

通信

RS485 - Modbus RTU 版本	MBUS版本
A = Data -	A = MBUS A
B = Data +	B = MBUS B
C = 共用	C = 未使用

端子连接器

线路端子	
最小导线横截面	1 mm²
最大导线横截面	25 mm²
螺纹	M5
螺钉头	PZ2
拧紧力矩	2 Nm
剥线长度	13 mm
中性线端子	
最小导线横截面	2 x 1 mm²
最大导线横截面	2 x 25 mm²
螺纹	M9
螺钉头	PZ2
拧紧力矩	2 Nm
剥线长度	13 mm

通信和I/O端子	
极数	3
节距	5/5,08 mm
最小导线横截面	0,2 mm² (AWG 24)
最大导线横截面	2,5 mm² (AWG 12)
螺纹	M2
螺钉头	PZ1
拧紧力矩	0.5 Nm
	6 mm

由安装人员负责确定是否使用截面小于25mm²的电缆。

3.5 配置电表

默认设置

有关如何更改电表默认设置的信息,请参阅"6配置"。

下表列出了默认电表设置:

参数	直连式电表	
电线数量	3P4W: 3相4线	
脉冲频率	1.000脉冲/kWh(kvarh)	
脉冲长度	10 ms	
	地址: 1	
通信M-Bus	波特率: 9600	
	访问级别: 开放式	
	地址: 1	
通信Modbus	波特率: 19200	
	奇偶校验: 偶数校验	

4 首次调试

在D13 15电表首次通电时,向导程序将指导用户执行第一个调试步骤。

4.1 快速设置

在快速设置过程中,用户必须选择以下选项之一:

- a) 不执行快速设置: 在这种情况下, 电表采用以下默认参数:
 - · 线规: 3P4W; 通信: .
 - 在使用Modbus电表的情况下→地址:1;波特率:19200;奇偶校验:偶数校验。 -
 - 在使用Mbus电表的情况下→地址: 1; 波特率: 9600; 访问方式: 开放式。 在采用脉冲电表的情况下 → DO: 脉冲。 -
 - -
- b) 稍后执行快速设置:每次用户进入设置菜单时,电表都会要求运行快速设置,直到达到1kWh。
- c) 执行快速设置: 在这种情况下, 用户可以对接线、通信和密码进行配置。

快速设置-导线配置

在导线菜单中,用户可以声明所应用的电表接线方案。

一旦达到1kWh的能耗,D13将进入MidLock状态。在达到MidLock状态后,不能再根据《欧洲MID指令》修改接 线设置。

要执行导线设置,请按照以下步骤操作:

接线类型	导线数量
3相	4线
	3线
2相	3线
1相	2线

如果未设置导线方案,则考虑使用默认参数: 3P4W。

快速设置-通信设置

快速设置的第二步与通信参数有关,通信参数根据电表类型变化:

· 对于Modbus电表,必须执行以下步骤("6.12 设置Modbus通信"):

Modbus菜单	
地址	1-247
	115200
	57600
	38400
	19200
	9600
	4800
	2400
	1200
奇偶校验	偶数校验
	奇数校验
	无

· 对于Mbus电表,必须执行以下步骤(请参阅 "6.13 设置M-bus通信"):

Mbus菜单	
地址	1- 257
波特	38400
	19200
	9600
	2400
	300
奇偶校验	开放式
	密码
	关闭

· 对于**没有Modbus或Mbus的电表**,必须执行以下步骤:

DO菜单		
脉冲		
	总反向有功电能 kW h	
	总正向无功电能 k VArh	
	总反向无功电能 k VAr	
开启		
关闭		
警报	选择并设置与通道相关的参数(数量)(请参阅"6.10 设置警 报")。	

快速设置-密码配置

为了保护您的电表设置,可以设置4位密码(请参阅"6.3设置密码"):

4.2 最终确认

在执行所有快速设置的设置后,需要进行确认:

对于MID电表,当耗电量达到1kWh时,将显示Midlock警报,以提醒用户。此时,依据《MID指令》,导线配置 方案将不再允许进行修改。

5 设备访问方式

5.1 按钮说明

5.2 显示结构

显示结构分为下图所示的三个主要区域:

N	区域	说明
1	测量/标题	具体测量值; 每个屏幕上显示的内容的标题,包括MENU、READ和SET···
2	量级/单位	量级包括K和M; 单位包括V、A、W和WH […]
3	图标	表示各种类型的状态; 要了解更多详情,请参见 "5.4 图标说明和状态"

5.3 菜单

按下 esc 或 Home, 屏幕显示以下页面:

בם kW h	主页-正向有功电能	
는 값는 kW h	主页–反向有功电能	
는 k VArh	主页-正向无功电能	
EDE k VArh	主页-反向无功电能	
EnEr6Y	电能	
InSEAnE	瞬时值	
r SE.r E 6	复位寄存器	
LAR IRFS	计量费率	
PWr.9E4	电能质量	
1-[]	输入/输出	
L065	日志	
• SEEE In6	设置	

5.4 图标说明和状态

图标	说明	状态
Ē	正在进行通信。电表正在发送" → "或接收" ← "信 息。	当通信正在进行时,图标将开启
≓1 ≓2 ≓3	箭头表示每相电流的方向。 没有箭头的数字表示电流低于该相的启动电流。	向左箭头=反向 向右箭头=正向
	错误通知	在尚未达到1kwH的阶段:它将持续闪烁
!	警告通知	
	警报通知	报警过程中:警铃闪烁; 如果出现警报:警铃开启并固定显示。
T 1 T 2 T 3 T 4	有效计量费率	显示屏显示有效计量费率。
	配置模式受PIN码保护	如果您输入错误的PIN码三次,锁图标会开 始闪烁30秒
NET	净值(连同页面上的单位)	
EXP	反向(连同页面上的单位)	
IMP	正向(连同页面上的单位)	
kg	计算出的二氧化碳千克数	
►	总系统反向电能 (连接到相位/线路)	当图标开启时,表示电表正在测量系统正向 的总电能
\mapsto	总系统正向电能 (连接到相位/线路)	当图标开启时,表示电表正在测量系统反向 的总电能
ພ	系统中的电感性负载 (独立于其他任何项目)	
⊣⊢	系统中的电容性负载 (独立于其他任何项目)	

5.5 主菜单

根据接线方案,所有数据读数都可能在显示屏中显示(请参阅"7.2 仪表功能")。

EnErEY
总正向有功电能
L1正向有功电能
L2正向有功电能
L3正向有功电能
总反向有功电能
L1反向有功电能
L2反向有功电能
L3反向有功电能
总净有功电能
L1净有功电能
L2净有功电能
L3净有功电能
总正向无功电能
L1正向无功电能
L2正向无功电能
L3正向无功电能
总反向无功电能
L1反向无功电能
L2反向无功电能
L3反向无功电能
总净无功电能
L1净无功电能
L2净无功电能
L3净无功电能
总视在电能
L1视在电能
L2视在电能
L3视在电能
Wh/CO2当量
Wh/CUR当量

总有功功率
L1有功功率
L2有功功率
L3有功功率
总无功功率
L1无功功率
 L2无功功率
 L3无功功率
 L1视在功率
 L2视在功率
L1-N相对中性线电压
L2-N相对中性线电压
 L1-L2相间电压
 L2-L3相间电压
 L3-L1相间电压
 L1电流
L2电流
L3电流
中性线电流
频率

ERF IFF
T1正向有功电能
T2正向有功电能
T3正向有功电能
Τ4正向有功电能
T1反向有功电能
T2反向有功电能
T3反向有功电能
Γ4反向有功电能
Π正向无功电能
T2正向无功电能
Г3正向无功电能
Τ4正向无功电能
Π反向无功电能
T2反向无功电能
T3反向无功电能
T4反向无功电能

-[]		
输出类型		
输出状态	-	
输入类型		
脉冲计数器		

SEEE In8	5
快速设置	
修改	
读取	

₽₩₽₽₽₽
总功率因数
L1功率因数
L2功率因数
L3功率因数
Cosphi总和
L1 Cosphi
L2 Cosphi
L3 Cosphi
总电流象限
L1电流象限
L2电流象限
L3电流象限

本章概述了电表设置和配置。

6.1 菜单结构

可以配置以下全部功能或其子集:

快速设置(仅第一次)	
设置/修改密码	
重置	 工厂
	全局
	可复位寄存器(通过显示屏上的Rst.Rg)
亮度(%)	
备用	延迟(秒)
	亮度(%)
自动滚动	
等值货币/CO₂	
导线	
I-0	脉冲输出(显示屏上的Pul.Out.)
	通信输出
	警报输出
	脉冲输入
	计量费率输入
警报	1-25
分时费率	通信
	输入
	关闭
Modbus (*)	
	波特率
	奇偶校验
M-bus (*)	地址
	波特率

(*)通信设置因电表类型而异。

6.2 设置值

		功能	
	按下	按住	
ОК	设置/确认所选值		
HOME	向上滚动/增加一个数字	返回主菜单。	
ESC	向下滚动/减少一个数字	返回上一个菜单。	

设置数字程序

链接	说明
	菜单要求输入数字字符(0-9)。 执行以下步骤:

示例:插入"3582"

31

每次配置完设置后,都会弹出一个确认窗口。按下 이 可确定更改。

设置菜单提供读取/修改选项。在选择"修改"选项后,按需求输入密码(请参阅"6.3 设置密码")。

6.3 设置密码

· 激活/停用密码

· 修改密码

输入新密码(如果之前已配置旧密码,则设备会要求输入旧密码)。

6.4 重置选项

重置选项	
恢复出厂设置	将设备恢复到出厂状态,但不包括审计日志和MID电表的 接线方案。
全局重置	除设置和审核日志外,对设备进行全面重置。
复位寄存器	可选寄存器:
	总正向有功电能
	总反向有功电能
	总正向无功电能
	总反向无功电能

6.5 设置待机选项

电表允许设置设备进入待机状态所需的时间间隔,以及设备进入此阶段后所保持的亮度。 要更改这些参数,请执行以下步骤:

·设置待机延时

6.6 设置自动滚动选项

设备配备了可激活或停用的自动滚动功能。还可以设置发生自动滚动所需的时间间隔。要设置此选项,请执行以 下步骤:

·激活/停用自动滚动

·设置自动滚动延迟

6.7 设置货币/CO2

设备允许设置货币/CO2的转换系数,用于将kWh转换为货币和/或kg CO2。

6.8 设置导线

要设置导线数量和接线类型,请执行以下步骤(在MID版本的设备达到1kWh时,可执行此操作):

接线类型	导线数量
3相	4线
	3线
2相	3线
1相	2线

6.9 设置I-0

一旦选择了与脉冲输出相关的参数,电表将要求选择脉冲频率(秒)和脉冲长度。

数字输出选项	
脉冲	正向有功电能
	反向有功电能
	未激活
 开启	
关闭	
警报	如果选择此选项,电表随后将要求选择报警槽并确认。
Led	
	正向有功电能
	反向有功电能
	正向无功电能
	反向无功电能
数字输入选项	
脉冲	脉冲比
	单位
计量费率	

有关详细信息,请参见"7.4 输入和输出"。

6.10 设置警报

有关警报的定义,请参阅"7.3 警报"。

电表允许在多达25个不同的通道上设置警报,并将其与一个可选参数连接。所有25个通道均采用相同的程序。要 配置警报,请执行以下步骤:

- 3. 选择警报类型,可用选项为"超过"和"低于"。
- 4. 根据警报类型,选择与警报激活相关的阈值。

7. 选择是否要记录警报。

8. 到此完成警报选项的设置。

6.11 设置分时费率

有关更多详细信息,请参阅"7.4 输入和输出"。

6.12 设置Modbus通信

Modbus菜单	
地址	1-247
波特	115200
	57600
	38400
	19200
	9600
	4800
	2400
	1200
奇偶校验	偶数校验
	奇数校验
	无

6.13 设置M-bus通信

M-Bus菜单		
地址	1-250	
	38400	
	19200	
	9600	
	2400	
	300	
访问级别	开放式	
	使用密码打开	
	关闭	

7 电表功能技术

本章包含电表功能的技术说明。

7.1 电能值

电能值存储在电能寄存器中。不同的电能寄存器可分为:

- 包含有功电能、无功电能、视在电能的寄存器。
- 包含不同计量费率或所有计量费率总和的寄存器。
- 包含每相电能或所有相总和的寄存器。
- · 可复位寄存器(可以通过按钮或通信命令设置为零)。
- · 电能值可以通过通信方式读取,也可以借助按钮直接从显示屏上读取。

寄存器值的表示方法

在D13直连式电表中,电能显示为含两位小数的七位数字,单位为kWh/ kvarh/KVAh。如发生溢出,则显示的小数减少一位。也就是说,在显示100.000,0 kWh时变为1位小数,在显示1,000,000 kWh时不显示小数。

7.2 仪表功能

仪表	3相4线	3相3线	2相3线(无MID)	1相2线
总有功功率			•	•
L1有功功率	•	•		
L2有功功率				
L3有功功率	•	•		
总无功功率				
L1无功功率			•	
L2无功功率				
L3无功功率				
总视在功率	•	•		•
L1视在功率				
L2视在功率	•			
L3视在功率	•			
L1 - N电压				
L2 - N电压	•		•	
L3 - N电压				
L1 - L2电压				
L3 - L2电压				
L1 - L3电压	•			
L1电流				•
L2电流			•	
L3电流	•	•		
N电流				
频率				
总功率因数				
L1功率因数				
L2功率因数				
L3功率因数				
Cosphi总和				
L1 Cosphi				
L2 Cosphi				
L3 Cosphi				
电流象限总和				

仪表	3相4线	3相3线	2相3线(无MID)	1相2线
L1电流象限	•			
L2电流象限				
L3电流象限				

精度

所有仪表数据精度均在规定标称电压的20%的电压范围内,以及基极电流的5%至最大电流的电流范围内定义。

除频率、电压和电流相位角外,所有仪表数据的精度与规定的电能计量精度相同。电压和电流相位角的精度为2 度,频率的精度为0.5%。

数量

根据电表类型,可以对以下所有或部分数量进行监测:

L1电压	L3有功功率
L2电压	总无功功率
L3电压	L1无功功率
L1-L2电压	L2无功功率
L2-L3电压	L3无功功率
L1-L3电压	总视在功率
L1电流	L1视在功率
L2电流	L2视在功率
L3电流	L3视在功率
	总功率因数
总有功功率	L1功率因数
L1有功功率	L2功率因数
L2有功功率	L3功率因数

最短记录时间

电能寄存器只有当电表锁定时才可用。电能屏幕有7位数字。根据数量,分别以kWh、kVAh、kVArh为单位显示。 因此,以kWh、kVAh、kVArh为单位的电能最大可累积到9999999。这个数字允许以24小时不间断运行的方式累 积4000小时。在达到此值之后,计数器将回到零。此外,用户不能通过任何HMI或通信交互方式重置寄存器。

7.3 警报

警报功能用于实现电表数量的监测。可以将监测设置为高或低水平检测。在数量超过设定水平时,会发出高水平检测警报。当值低于设定水平时,会发出低水平检测警报。

可以配置25个警报(请参阅"6.10 设置警报")。可以通过通信方式或直接使用电表上的按钮进行配置。

功能说明

当被监测数量的值超过给定值的时间段超过或长于指定的延时时间,警报被激活。同样,当值超过停用水平并保 持在该水平的时间等于或长于指定的延时时间,警报将被停用。

如果激活水平高于停用水平,则当监测量的值高于激活水平时,会激活警报。

如果激活水平低于停用水平,则当监测量的值低于激活水平时,会激活警报。

7.4 输入和输出

输入/输出由光耦合器构建,并与其他电表电子设备进行电气隔离。它们是单向的,并且只处理直流电压。 未连接的输入相当于电压关闭。

输出等效电路是与电阻器串联的理想继电器。

有关配置, 请参阅"6.9 设置I-O"。

脉冲输入

在短时间内出现并具有特定宽度的电气信号波形(方波)被称为"脉冲"或"脉冲信号"。

输入对这些脉冲、寄存器活动和当前状态进行计数,数据可以直接在电表显示器上读取或通过通信读取。此外, 可通过通信方式或电表上的按键重置寄存器活动。

计量费率输入

要设置计量费率,请参阅"6.11设置分时费率"。

·计量费率控制

具有分时费率功能的电表可以通过通信方式或输入来进行计量费率的控制。

通过输入进行计量费率控制是通过向输入施加"电压"或"无电压"状态的适当组合来实现的。每出现一种"电压"/"无 电压"状态的组合,电表都会将电能记录在特定的分时费率寄存器中。

在同时具有有功和无功计量的组合电表中,这两个量都由相同的输入控制,有功电能和无功电能保持相同的有效 计量费率。

·有效计量费率指示

有效计量费率显示在LCD上状态字段中文本"Tx"的旁边,其中x是计量费率编号。有效计量费率也可以通过通信读取。

· 输入编码

输入采用二进制编码。下表介绍了默认的编码方式。

输入1	计量费率
OFF	= T1
ON	= T2

脉冲输出

在脉冲输出端,电表每kWh(无功脉冲输出为kvarh)发送指定数量的脉冲(脉冲频率)。 可以通过通信或警报来控制输出。 脉冲的数量与通过电表的电量和脉冲的长度成正比。 脉冲频率和脉冲长度可以通过电表上的按钮或通信进行设置。

·脉冲频率

脉冲频率值的设置范围为1-9999。 脉冲:该值必须为整数。 单位可选,可以设置为imp/kWh、imp/Wh或imp/MWh。

· 脉冲长度

脉冲长度值的设置范围为10-990ms。

·确定脉冲频率/长度

如果功率对于某个脉冲长度和脉冲频率来说太高,则存在脉冲相互冲突的风险。如果发生这种情况,电表将在前 一个脉冲终止(继电器闭合)之前发出一个新的脉冲(继电器断开),并且该脉冲将被忽略。在最坏的情况下, 继电器可能会保持闭合状态。

为避免这个问题,应该根据估计的最大功率和电表的脉冲输出数据计算出特定位置允许的最大脉冲频率。

·公式

此计算使用的公式为:

最大脉冲频率=1000*3600/U/I/n/(Ppause + Plength)

其中U和I是估计的最大元件电压(单位为伏特)和电流(单位为安培),n是元件数量(1-3)。Plenth和Ppush 是脉冲长度和所需的脉冲暂停时间(以秒为单位)。合理的最小脉冲长度和脉冲暂停时间为30ms,这些值符合 S0和IEC标准。

例子:

在估计最大电压和电流为250 V和65 A、脉冲长度为100 ms、所需脉冲暂停时间为30 ms的直连式三元件电表中,最大允许脉冲频率为:

1000*3600/250/65/3/(0.030+0.100)=568个脉冲/kWh(kvarh)

D13 电表用户手册

7.5 日志

D13电表包含两种不同类型的日志:

- ・ 事件日志
- 市计日志

事件日志

事件日志包括错误、警告和警报。

事件日志可以通过通信或直接在电表的显示屏上读取。

事件日志中最多可以存储200个日志事件。当达到日志的最大事件数量时,最久的事件将被覆盖。可以通过通信 删除事件日志中的所有条目。

此日志存储与警报、错误和配置警告相关的事件。

事件中存储以下信息:

- 事件代码
- ・ 持续时间

此日志存储以下事件:

・错误

- ·程序CRC错误-检查固件一致性时出错。
- 持久存储错误-存储在长期内存中的数据已损坏。

・警告

- · 负极电源元件1警告-元件1测量到负电源
- · 负极电源元件2警告-元件2测量到负电源
- · 负极电源元件3警告-元件3测量到负电源
- · 负总功率警告-测得的总功率为负
- U1缺失警告-U1缺失
- U2缺失警告-U2缺失
- U3缺失警告-U3缺失
- · 频率警告-网络频率不稳定

・警报

- ・ L1电流警报
- ・ L2电流警报
- ・ L3电流警报
- 中性线警报电流
- ・ 总有功功率警报
- ・ L1有功功率警报
- ・ L2有功功率警报
- ・ L3有功功率警报
- ・ 总无功功率警报
- ・ L1无功功率警报
- ・ L2无功功率警报
- ・L3无功功率警报
- · 总视在功率警报
- ・ L1视在功率警报
- ・ L2视在功率警报
- ・ L3视在功率警报
- · 总功率因数警报
- ・ L1功率因数警报
- ・ L2功率因数警报
- ・ L3功率因数警报
- ・ L1电压警报
- ・ L2电压警报
- ・ L3电压警报
- ・ L1-L2电压警报
- ・ L2-L3电压警报
- ・ L1-L3电压警报

审计日志

审计日志跟踪固件升级、密码更改、重置等重要事件。

审计日志最多可以存储 923个日志事件。

当达到此日志的最大事件数时,将无法存储更多事件,并在显示器上显示"审计日志错误"。

因为无法存储更多的日志事件,新的固件升级尝试将会失败。

事件中存储以下信息:

- ・ 项目编号;
- · 固件升级计数
- ・ 固件版本
- 接线设置索引
- 正向有功电能
- ・ L1正向有功电能
- ・ L2正向有功电能
- ・ L3正向有功电能
- ・正向有功电能计量费率1
- ・正向有功电能计量费率2
- ・正向有功电能计量费率3
- ・正向有功电能计量费率4
- 反向有功电能
- · 审计日志的生命周期计数器快照
- · 固件升级的源标识符
- · 固件升级成功状态
- · 固件升级失败计数器

8 测量方法

8.1 测量电能和功率

有功电能

为确保向用户准确计费,公用事业公司需要对有功电能进行测量。这一需求是显而易见的。通常,用户消耗的电能越多,电表的精度需求就越高。业界普遍采用四个精度等级来划分:依次为2%-(适用于小型用户,如家庭)、1%-、0.5%-及0.2%-,各等级对应特定的功率水平。

从用户角度看,通过测量有功电能来了解电能的消耗时间和地点也是很容易理解的。这种信息可以帮助用户采取 措施降低能耗和成本。

在某些情况下,简化测量是可取的。在这种情况下,可以使用简化方法。本章对其中最常见的方法进行了描述。 这些方法通常需要平衡负载,即所有相的阻抗相同,从而在所有相上产生相同电流幅度和功率因数。

应该提到的是,即使负载完全平衡,如果所有相上的输入电压不同,精度也会降低。

有功电能的计算方式是测量所有元件(例如元件1、元件2等)的电压和电流的时间积分,将它们相乘并求和。请 参阅下文。

有功电能 =

$$(U1(t) \cdot I1(t) + U2(t) \cdot I2(t) \cdots) \cdot dt$$

当前,几乎所有的电能表都已数字化。它们采用模拟到数字转换器(ADC)对电压和电流进行采样,并计算所有 被测元件的这些电压和电流样本与T的乘积之和,作为时间积分。

有功电能进一步细分为正向和反向电能两部分。正向电能指的是从电源(电力公司)传输至用户负载的能量,而 反向电能则是从用户端反向流向主电网的电能。用户电能可能包括太阳能电池板等。

正向和反向电能的差值即为净电能。

除测量总有功电能外,还能单独测量每个测量元件的电能,常见的测量元件为相位电能。

有功功率

有功功率是通过连续捕捉有功电能的快照,并计算相邻快照间电能增量随时间的变化率得出的,具体公式见下 文。其中,Ek和Ek+1代表连续两个有功电能快照,T为这两个快照之间的时间间隔,即交流电网络的完整周期 数。有功功率的正负取决于有功电能的流向,可以是正值(表示正向)或负值(表示反向)。

有功功率 = (E_{k+1} - E_k) /T

如果不存在谐波干扰且负载稳定,则各相的有功功率可以计算为:

 $\mathsf{P} = \mathsf{U}_{\mathsf{rms}}^* \cdot \mathsf{I}_{\mathsf{rms}}^* \cdot \cos \varphi$

其中φ是电压和电流之间的相位角。

无功电能

在某些情况下,还需要测量无功电能。用户设备,比如包含电感性元件(如电机)的设备,会因其负载具有或多 或少的无功分量的特性导致电流与电压之间出现相移。无功负载会引起电流的增加。因此,这意味着必须增加发 电机和电力线的容量,从而增加了公用事业公司的成本。同时,更高的电流也意味着线路上的损耗加剧。

因此,用户与电力供应商之间签订的合同通常会规定最大允许的相移。一旦用户超出规定的最大无功负载,他将 承担额外的费用。为此,需要采用公用事业计量仪表来监测无功电能及/或功率,以满足此类型合同的要求。

从用户的角度来看,测量无功电能/功率同样具有价值,因为它能揭示负载的具体性质。即不同负载的大小及其随 时间的变化趋势。这些信息可用于制定降低无功功率/电能、减少电费支出的策略。

根据IEC标准的无功电能规定,测量的无功电能是电网基频中包含的电能。因此,电压和电流中的谐波不会影响无 功电能的量。

无功电能的计算方法为:将所有测量元件的电压基波有效值与电流基波有效值的乘积,再乘以电压与电流之间的 相角(即无功功率),最后乘以有效值测量时间T(即交流电网络的完整周期数),将所有结果相加即可。具体公 式如下:

无功电能 =
$$\sum_{k}$$
 (U1_k · I1_k · sin(φ 1) + U2_k · I2_k · sin(φ 2) + ···) · T

无功功率

如上所述,无功电能的计算方法是将无功功率乘以基波有效值和电压与电流之间相位角的测量时间。因此,如下 式所示,无功功率的计算与电能的计算方式相同,只是省略了与时间相乘的步骤。测量是在完整的交流电网周期 数内完成的。无功功率的正负取决于无功电能的流向,可以是正值(表示正向)或负值(表示输出)。

无功功率 =
$$\sum_{k}$$
 (U1_k · l1_k · sin(φ 1) + U2_k · l2_k · sin(φ 2) + ···)

视在电能

视在电能的计算方法为:将所有测量元件的电压有效值与电流有效值的乘积,再乘以有效值测量时间T(即交流电网络的完整周期数),将所有结果相加即可。具体公式如下:因此,它不受电流和电压之间相移的影响。与无功电能一样,它有时可以在功率因数低于某个值的情况下用于计费。

视在电能 =
$$\sum_{k}$$
 (U1_k · I1_k + U2_k · I2_k + ···) ·T

视在功率

如上所述,视在电能的计算方法是将视在功率乘以基波有效值的测量时间。因此,如下式所示,视在功率的计算 与电能的计算方式相同,只是省略了与时间相乘的步骤。测量是在完整的交流电网周期数内完成的。从定义上来 看,视在功率总是正的。

视在功率 =
$$\sum_{k}$$
 (U1_k · I1_k + U2_k · I2_k + …)

电阻、电感和电容负载

电阻负载不会产生任何相移。电感负载的相移方向与电压中滞后电流方向相同,而电容负载的相移方向与电压超前电流的方向相反。因此,电感负载和电容负载可以相互补偿。

下图显示了电阻、电感和电容负载的矢量图:

相位移

消耗无功电能和有功电能的负载可以分为有功和无功分量。视在功率(U*I)矢量与有功功率分量之间的角度称为 相位移角或功率因数角。

下图显示了具有有功和无功分量且无谐波存在的负载的矢量图。

功率因数和Cos φ

功率因数定义为有功功率P与视在功率S之间的比值,如下所示。

功率因数 = P / S

Cos φ的定义为基波有功功率与基波视在功率的比值,与基波电压和基波电流之间的相位角的余弦相同, 如下所示。

 $\cos \varphi = \cos(U-to-I-angle)$

因此,功率因数与Cos φ之间的区别在于,功率因数包括所有谐波,而 Cos φ仅考虑基波主频。

四个功率象限

负载类型可以用四个象限几何表示。在第一象限内,负载为电感和有功负载,并且电能为正向电能(电能从公用 电网输送到用户)。在第二象限内,负载为电容和有功负载,有功电能为反向电能,而无功电能为正向电能。在 第三象限内,负载为电感和有功负载,无功电能为反向电能。在最后一个象限内,负载为电容负载,有功电能为 正向电能,而无功电能为反向电能。

负载类型可以用四个功率象限几何表示,如下图所示。

8.2 单相计量

2线制单相计量

在2线制设备中,使用单相电表。通常,两条导线为相电压和中性线。 负载消耗的有功电能是瞬时电压和电流的乘积在所需测量时间段内的积分。 下图显示了一个直接连接的单相电表,用于测量负载消耗的有功电能(E)。

4线制单相计量

在4线制系统中,有时可以使用单相电表来测量一个相中消耗的电能量,并乘以3以获得消耗的总电能。这种方法仅在平衡系统(所有相位中的电压、电流和功率因数相同)中才能得出正确的结果。这种方法不适用于准确测量,但可以在不需要高精度时使用。

下图所示为三相系统中的单相计量。

8.3 3相3线计量

3相3线计量法适用于3线制系统,通常是无中性导线的3相系统。无论负载是否平衡,都可以使用3相3线计量。 在3线计量中,L2电压用作电压参考,测量该电压与L1和L3电压之间的电压差,并将其乘以各自的电流。负载消 耗的有功电能是瞬时电压U1-U2和U3-U2以及电流I1和I3在所需测量时间段内的乘积积分。

下图显示了一个3相3线电表,用于测量负载消耗的有功电能(E)。

如果没有谐波存在并且电压和电流的有效值是恒定的,则总有功功率可以表示为:

Ptot = P1 + P3 = (U1-U2) x $|1 \times \cos \varphi |$ + (U3-U2) x $|3 \times \cos \varphi |$ 2

其中, φ12是(U1-U2)电压和I1电流之间的相位角,而φ32是(U3-U2)电压和I3电流之间的相位角。

下面的矢量图显示了纯电阻负载的相电压U1、U2和U3,相电流I1、I2和I3以及相间电压U1-U2和U3-U2的矢量, 其中相电流与其各自的相电压同相。

4线制系统中的3相3线计量

如果中性线连接中的电流为零,则3相3线计量也可用于4线系统。在具有非零中性线电流的系统中应用这种方法会 降低精度,但如果电流与相线电流相比较小或不需要高精度,则这种方法可能具有其合理性。

8.4 3相4线计量

这种方法通常用于具有中性导线的3相系统。

在3相4线电表中,中性线电压用作电压参考,测量中性线电压与L1、L2和 L3电压之间的电压差,并将其乘以各自 的电流。负载消耗的有功电能是瞬时电压U1、U2和U3以及电流l1、l1和l3在所需测量时间段内的乘积积分。

下图显示了一个直接连接的3相4线电表,用于测量负载消耗的有功电能(E)。

 $E = \int (U1(t) \bullet I1(t) + U2(t) \bullet I2(t) + U3(t) \bullet I3(t)) \bullet dt$

如果没有谐波存在并且电压和电流的有效值是恒定的,则总有功功率可以表示为: Ptot = P1 + P2 + P3 = U1 x l1 x cos ϕ 1 + U2 x l2 x cos ϕ 2 + U3 x l3 x cos ϕ 3 其中 ϕ 1、 ϕ 2和 ϕ 3是相电压与其各自电流之间的相位角。

9 服务与维护

9.1 服务

本产品不包含可维修或更换的部件。损坏的电表必须更换。如需帮助,请联系ABB。 请勿打开电表外壳,也不要尝试维修任何组件。打开电表将导致精度和校准失效。

9.2 事件代码

下表描述了事件日志中可能发生的事件代码:

错误代码,名称-描述	文件[第1列,第2列]	代码
ERROR_AUDIT_LOG, LOG_ERROR_AUDIT_LOG	AUdIt, LOg	40
ERROR_PROGRAM_CRC, LOG_ERROR_PROGRAM_CRC	Prog, CrC	41
ERROR_PERSISTENT_STORAGE, LOG_ERROR_PERSISTENT_STORAGE	PErSISt, Strg	42
ERROR_RAM_CRC, LOG_ERROR_RAM_CRC	rAM, CrC	43
ERROR_FW_UP_INV_IMAGE, LOG_ERROR_FW_UP_INV_IMAGE	InV.IMg, FWw	44
ERROR_FW_UP_MAX_COUNT, LOG_ERROR_FW_UP_MAX_COUNT	MAX.Cnt, FWw	45
ERROR_FW_UP, LOG_ERROR_FW_UP	FW UP, FWw	46
ERROR_FW_UP_MAX_INV_IMG_COUNT, LOG_ERROR_FW_UP_MAX_INV_ IMG_COUNT	InV.Cnt, FWw	47
ERROR_ABB_SPECIFIC_STR_6, LOG_ERROR_ABB_SPECIFIC_STR_6	AbbStr, 7	48
ERROR_ABB_SPECIFIC_STR_7, LOG_ERROR_ABB_SPECIFIC_STR_7	AbbStr, 8	49
ERROR_ABB_SPECIFIC_STR_8, LOG_ERROR_ABB_SPECIFIC_STR_8	AbbStr, 9	50
ERROR_ACREF, LOG_ERROR_ACREF	ACrEF,	51
ERROR_MAINBOARDTEMP_SENSOR, LOG_ERROR_MAINBOARDTEMP_ SENSOR	SEnSOr, tMmP	52
ERROR_RTC_CIRCUIT, LOG_ERROR_RTC_CIRCUIT	ClrC, rtC	53

警告代码,名称-描述	文件[第1列,第2列]	代码
WARNING_U1_LOW, LOG_WARNING_U1_LOW	LOW, U1	1000
WARNING_U2_LOW, LOG_WARNING_U2_LOW	LOW, U2	1001
WARNING_U3_LOW, LOG_WARNING_U3_LOW	LOW, U3	1002
WARNING_MID_NOT_LOCKED, LOG_WARNING_MID_NOT_LOCKED	UNLOCK, MId	1003
WARNING_NEG_POW_ELEMENT_1, LOG_WARNING_NEG_POW_ELEMENT_	1 NEg.POW, L1	1004
WARNING_NEG_POW_ELEMENT_2, LOG_WARNING_NEG_POW_ ELEMENT_2	NEg.POW, L2	1005
WARNING_NEG_POW_ELEMENT_3, LOG_WARNING_NEG_POW_ ELEMENT_3	NEg.POW, L3	1006
WARNING_NEG_TOT_POW, LOG_WARNING_NEG_TOT_POW	NEg.POW, tot	1007
WARNING_FREQUENCY, LOG_WARNING_FREQUENCY	FrEq,	1008
WARNING_NOT_USED2, LOG_WARNING_NOT_USED2	nOt.USE, 2	1009
WARNING_DATE_NOT_SET, LOG_WARNING_DATE_NOT_SET	UnSEt, dAtE	1010
WARNING_TIME_NOT_SET, LOG_WARNING_TIME_NOT_SET	UnSEt, tlMm	1011
WARNING_U2_CONNECT, LOG_WARNING_U2_CONNECT	COnnECt, U2	1012
WARNING_U3_CONNECT, LOG_WARNING_U3_CONNECT	COnnECt, U3	1013
WARNING_I1_MISSING, LOG_WARNING_I1_MISSING	MISSIng, l1	1014
WARNING_I2_MISSING, LOG_WARNING_I2_MISSING	MISSIng, I2	1015
WARNING_I3_MISSING, LOG_WARNING_I3_MISSING	MISSIng, I3	1016
WARNING_I2_CONNECT, LOG_WARNING_I2_CONNECT	COnnECt, I2	1017
WARNING_I3_CONNECT, LOG_WARNING_I3_CONNECT	COnnECt, I3	1018
WARNING_PHASE1_CONNECTED_TO_NEUTRAL, LOG_WARNING_PHASE1_ CONNECTED_TO_NEUTRAL	tO_NEUt, PHASE1	1021

WARNING_PHASE2_CONNECTED_TO_NEUTRAL, LOG_WARNING_PHASE2_ tO_NEUt, PHASE2 CONNECTED_TO_NEUTRAL	1022
WARNING_PHASE3_CONNECTED_TO_NEUTRAL, LOG_WARNING_PHASE3_ tO_NEUt, PHASE3 CONNECTED_TO_NEUTRAL	1023
WARNING_PULSES_MERGED_1, LOG_WARNING_PULSES_MERGED_1 MErgEd, PULSE1	1024
WARNING_PULSES_MERGED_2, LOG_WARNING_PULSES_MERGED_2 MErgEd, PULSE2	1025
WARNING_POWERFAIL, LOG_WARNING_POWERFAIL POWEr, FAIL	1030

警报代码,名称-描述	文件[第1列,第2列]	代码
ALARM_1_ACTIVE, LOG_ALARM_1	ALArM, 1	2013
ALARM_2_ACTIVE, LOG_ALARM_2	ALArM, N	2014
ALARM_3_ACTIVE, LOG_ALARM_3	ALArM, N	2015
ALARM_4_ACTIVE, LOG_ALARM_4	ALArM, N	2016
ALARM_5_ACTIVE, LOG_ALARM_5	ALArM, N	2017
ALARM_6_ACTIVE, LOG_ALARM_6	ALArM, N	2018
ALARM_7_ACTIVE, LOG_ALARM_7	ALArM, N	2019
ALARM_8_ACTIVE, LOG_ALARM_8	ALArM, N	2020
ALARM_9_ACTIVE, LOG_ALARM_9	ALArM, N	2021
ALARM_10_ACTIVE, LOG_ALARM_10	ALArM, N	2022
ALARM_11_ACTIVE, LOG_ALARM_11	ALArM, N	2023
ALARM_12_ACTIVE, LOG_ALARM_12	ALArM, N	2024
ALARM_13_ACTIVE, LOG_ALARM_13	ALArM, N	2025
ALARM_14_ACTIVE, LOG_ALARM_14	ALArM, N	2026
ALARM_15_ACTIVE, LOG_ALARM_15	ALArM, N	2027
ALARM_16_ACTIVE, LOG_ALARM_16	ALArM, N	2028
ALARM_17_ACTIVE, LOG_ALARM_17	ALArM, N	2029
ALARM_18_ACTIVE, LOG_ALARM_18	ALArM, N	2030
ALARM_19_ACTIVE, LOG_ALARM_19	ALArM, N	2031
ALARM_20_ACTIVE, LOG_ALARM_20	ALArM, N	2032
ALARM_21_ACTIVE, LOG_ALARM_21	ALArM, N	2033
ALARM_22_ACTIVE, LOG_ALARM_22	ALArM, N	2034
ALARM_23_ACTIVE, LOG_ALARM_23	ALArM, N	2035
ALARM_24_ACTIVE, LOG_ALARM_24	ALArM, N	2036
ALARM_25_ACTIVE, LOG_ALARM_25	ALArM, 25	2037

9.3 清洁

如果需要清洁电表,请使用蘸有温和洗涤剂的湿布擦拭。

小心不要让液体进入电表,这会导致设备损坏。

10.1 二维码

022
您可以在"样本资料中心"的"资料下载" 模块,根据清晰的分类查找样本,也可通 过"关键词"搜索,浏览、下载或分享任何 所需信息资料。强大的搜索功能,无论输 入样本中的标题或内文中包含的关键词都 可匹配到相应资料!

关注"ABB电气中国微信服务号"之后,在电气全书菜单栏,点击"样本资料中心",即可进入由"产品中心"、"客户案例"

和"资料下载"三大版块集成信息库。

马上扫码关注 →→ ABB电气中国微信服务号, 将您的随身ABB电气"微助理" 装入口袋。

01

